Printed Pages - 7

337413 (37)

BE (4 ${ }^{\text {th }}$ Semester)
Examination, Nov-Dec 2021
Branch : Mechanical

APPLIED THERMODYNAMICS

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Attempt all questions. Question carry equal marks. Part (a) is compulsory, attempt any two parts from (b), (c) and (d).
Q. 1. (a) An inventor claims to have developed a refrigerator that maintains the refrigerated space at $2^{\circ} \mathrm{C}$, while operating in a room where temperature is $25^{\circ} \mathrm{C}$ \& has COP of 13.5. Is this claim reasonable?2
(b) A heat source at 800 K losses 2000 kJ of heat to a sink at (i) 500 K \& (ii) 750 K . Determine which heat transfer process that is more irreversible.
(c) Prove mixing of two fluids is an irreversible process
(d) Helium enters a turbine at $300 \mathrm{kPa}, 200^{\circ} \mathrm{C}$ expands to $100 \mathrm{kPa}, 150^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{p}}=5.2 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, molecular weight $=4.003$. Calculate the change in availability. The atmospheric conditions are $1.013 \mathrm{kPa} \& 25^{\circ} \mathrm{C}$. 7
Q. 2. (a) Define coefficient of volume expansion \&
coefficient of isothermal compressibility.2
(b) Using thermodynamic relation prove Mayer's relation 7

$$
C_{p}-C_{v}=\frac{T \beta^{2} v}{K}=R
$$

(c) Explain : 7
(i) Compressibility factor
(ii) Reduced properties
(iii) Compressibility chart
(d) The gas neon has a molecular wt of 20.183 and its critical temperature, pressure and volume are $44.5 \mathrm{~K} ; 2.73 \mathrm{MPa} ; \& .0416 \mathrm{~m}^{3} / \mathrm{kg}$ mol. Reading from a compressibility chart for a reduced pressure of 2 and a reduced temperature of 1.3 , the compressibility factor

Z is 0.7 . What are the corresponding $s p$. vol. pressure, temperature and reduced volume

From Comp. Chart at $p_{r}=2 \& T_{r}=1.3$; $Z=0.7$.
Q. 3. (a) What is the difference between compressed liquid \& saturated liquid?
(b) A rigid tank contains 10 kg of water at $90^{\circ} \mathrm{C}$.

If 8 kg of water is in liquid form and the rest
is in vapour form, determine (i) the pressure
in the tank (ii) the volume of the tank. 7
(c) Steam power plant operating on ideal

Rankine cycle. Steam enters the turbine at

3 MPa and $350^{\circ} \mathrm{C}$ and is condensed in the
(5)
condenser at a pressure of 10 kPa (i)
determine thermal efficiency of the plant (ii)
thermal efficiency if steam is superheated to $600^{\circ} \mathrm{C}$ instead of $350^{\circ} \mathrm{C}$, and (iii) the thermal efficiency if boiler pressure is raised to 15 MPa , while turbine inlet temperature is maintained at $600^{\circ} \mathrm{C}$. 7
(d) Define vacuum efficiency of condenser. If vacuum maintained in a surface condenser is 700 mm of Hg and the barometer reads 760 mm of Hg . The temperature of condensate is $18^{\circ} \mathrm{C}$. Find (i) partial pressure of air (ii) mass of air per kg of steam (iii) vacuum efficiency. 7
Q. 4. (a) Define Refrigeration. How dry ice is used for purpose of refrigeration.
(b) Explain vapour compression cycle with the help of sketch \& T-s diagram.
(c) Why compressors are made multistage?

Determine equation of work of two stage air compressors with complete intercooling. 7
(d) A double acting single cylinder reciprocating air compressor has a piston displacement of $.015 \mathrm{~m}^{3} / \mathrm{rev}$. operates at 500 rpm \& has a 5% clearance. The air is received at 1 bar \& delivered at 6 bar. The compn \& $\exp ^{n}$ are polytropic with $n=1.3$: Find volumetric η, power required, heat transfered \& its direction during comp ${ }^{n}$ of air at inlet temperature of $20^{\circ} \mathrm{C}$.
Q. 5. (a) Define stagnation state \& stagnation properties. 2
(b) What is choking in nozzle flow ? Explain. 7
(c) Prove for one dimensional steady isentropic flow 7

$$
\frac{d A}{A}=\left(M^{2}-1\right) \frac{d v}{V}
$$

(d) An aircraft flies at a velocity of $700 \mathrm{~km} / \mathrm{hr}$ in an atmosphere where the pressure is 75 kPa \& temperature is $5^{\circ} \mathrm{C}$. Calculate Mach number \& stagnation properties. 7

